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Abstract
We outline a general method of obtaining exact solutions of PT -symmetric
Schrödinger equations with a position-dependent effective mass. Using
this method, exact solutions of some PT -symmetric potentials have been
obtained. We have also discussed the construction of isospectralPT -symmetric
potentials.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ge

1. Introduction

Apart from their intrinsic interest, position-dependent or effective mass Schrödinger equations
(EMSEs) have found applications in a number of areas, for example, in the study of electronic
properties of semiconductors [1], quantum dots [2], quantum liquids [3]. Also, in recent years
various theoretical aspects of EMSEs, for example, exact solvability [4], supersymmetric
formulation [5], Lie algebraic approach [6] etc, have been studied widely. It has also been
found that such equations appear in very different areas. For example, it has been shown
that constant mass Schrödinger equations in curved space and those based on deformed
commutation relations can also be interpreted in terms of EMSEs [7]. Also, certain types of
time-dependent Schrödinger equations can also be reduced to the effective mass form [8].

On the other hand, non-Hermitian quantum mechanics in general and PT -symmetric ones
in particular have drawn much attention [9] since the seminal work by Bender et al [10]. One
of the reasons behind this surge of interest lies in the fact that PT -symmetric Hamiltonians,
in spite of being non-Hermitian, can have real eigenvalues [10]. Furthermore, non-Hermitian
quantum mechanics have many applications, for example, in the study of delocalizations
[11], population dynamics [12], disordered systems [13]. EMSEs also appear in the context
of classical description of certain PT -symmetric models [14]. Here our objective is to
examine construction of non-Hermitian potentials within the effective mass formalism. In
particular, we shall present a general method of constructing exactly solvable PT -symmetric
potentials within the framework of effective mass formalism. Subsequently, we shall use this
method to obtain exact solutions of some PT -symmetric potentials. We shall also discuss the
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construction of isospectral potentials. The organization of the paper is as follows: in section
2, we describe a method of solution of the effective mass Scrödinger equation; in section
3 we obtain exact solutions of some PT -symmetric potentials; in section 4 we discuss the
construction of isospectral potentials using different mass functions; in section 5, we discuss
the symmetry behaviour of the Schrödinger equations and finally section 6 is devoted to a
conclusion.

2. Point transformation approach to the effective mass Schrödinger equation

We note that when the mass depends on the position the kinetic energy can be defined in
several ways. The most general form of the Hamiltonian can be written as [15]

H = 1
4 (mα(x)pmβ(x)pmγ (x) + mγ (x)pmβ(x)pmα(x)) + V (x) (1)

where the parameters α, β and γ are constrained by the relation α + β + γ = −1. There
are different forms of the Hamiltonian depending on choices of the parameters. Here we
shall work with the most popular form, namely, the BenDaniel–Duke form (corresponding to
α = γ = 0, β = −1) [16, 17]. In this case the Hamiltonian is invariant under instantaneous
Galilean transformation [17]. The corresponding Schrödinger equation is given by

− d

dx

(
1

2m(x)

dψ(x)

dx

)
+ V (x)ψ(x) = Eψ(x) (2)

The wavefunction ψ(x) should be continuous at the mass discontinuity and the derivative of
the wavefunction should satisfy the following condition:

1

m(x)

dψ(x)

dx

∣∣∣∣
−

= 1

m(x)

dψ(x)

dx

∣∣∣∣
+

. (3)

We recall that a Hamiltonian H is said to be PT -symmetric if [9, 10]

PT H = HPT (4)

where P is the parity operator and T is the time reversal operator. Their action on the position
and momentum operators are given by

P : x → −x, p → −p, T : x → x, p → −p, i → −i. (5)

Using (5) we find that equation (2) will be PT -symmetric if (we take the mass function to be
real)

m(x) = m(−x), V ∗(−x) = V (x). (6)

We note that equation (2) may be solved in different ways. Here we shall use the method
of point canonical transformation [18–20]. To this end, we now perform the following
transformation of the wavefunction ψ(x),

ψ(x) = [2m(x)]
1
4 φ(x) (7)

and obtain from equation (2)

− 1

2m(x)
φ′′(x)+

1

4

(
m′(x)

m2(x)

)
φ′(x)+

[
7m′2(x) − 4m(x)m′′(x)

32m3(x)

]
φ(x)+V (x)φ(x) = Eφ(x)

(8)

where the prime indicates differentiation with respect to x. Next we make a change of the
independent variable defined by

x̄ =
∫ x √

2m(y) dy. (9)
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Using (9) in equation (8) we get

−d2φ(x̄)

dx̄2 + �(x̄)φ(x̄) = Eφ(x̄) (10)

where for the sake of convenience we have used φ(x)|x=x̄ = φ(x̄) and �(x̄) is defined by

�(x̄) = V (x = x̄) +

[
7m′2(x) − 4m(x)m′′(x)

32m3(x)

]
x=x̄

= V (x = x̄) + V1(x = x̄). (11)

It is important to note that the change of variable in (9) may not always be invertible or at
least not easily invertible. But this does not really pose a problem as far as solvability of (2) is
concerned. This is because x̄ as a function of x is explicitly known from (9) and if we choose
V (x) such that

V (x) = V2(x̄) − V1(x̄) (12)

where V2(x̄) is a solvable PT -symmetric potential then the spectrum of (10) will be known
and this in turn will give us the spectrum of equation (2). The corresponding wavefunctions
can be obtained using (7). In the next section we illustrate the method with a few examples.

3. Examples

3.1. PT -symmetric Scarf II potential

In order to obtain specific potentials it is now necessary to prescribe the mass function m(x).
In the present case we choose the form1 used in [5]:

m(x) =
(

α + x2

1 + x2

)2

, m(x) = m(−x). (13)

Then from (9) we get

x̄ =
√

2[x + (α − 1) tan−1 x], −∞ < x̄ < ∞ (14)

and using (14) in (11) we find

V1(x) = (α − 1)

2(α + x2)4
[−3x4 + (2α − 4)x2 + α]. (15)

As we mentioned in the last section, it is now necessary to choose V2(x̄) to be a solvable
PT -symmetric potential. Let us first consider the Scarf II potential [21, 22],

V2(x̄) = −λ sech2 x̄ − iµ sech x̄ tanh x̄ (16)

where |µ| < λ + 1
4 . The energy spectrum of (16) and the corresponding wavefunctions are

well known and are given by [21, 22]

En = −(n − p − q)2, n = 0, 1, 2, . . . <
s + t − 1

2
(17)

φn(x̄) = �
(
n − 2p + 1

2

)
n!�

(
1
2 − 2p

) z−p(z∗)−qP
−2p− 1

2 ,−2q− 1
2

n (i sinh x̄) (18)

1 The choice of the mass function m(x) depends on the particular physical problem involved. Although the results
of this paper are valid for any mass function satisfying the condition (6), the particular form (13) is chosen for the
sake of integrability.
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where z = 1 − i sinh x̄

2
and p, q are given by

p = −1

4
± 1

2

√
1

4
+ λ + µ = −1

4
± t

2
(19)

q = −1

4
± 1

2

√
1

4
+ λ − µ = −1

4
± s

2
. (20)

Then using (12), (15) and (16) the original potential V (x) is found to be

V (x) = −λ sech2[x + (α − 1) tan−1 x] − iµ sech[x + (α − 1) tan−1 x]

× tanh[x + (α − 1) tan−1 x] +
(α − 1)

2(α + x2)4
[3x4 + (4 − 2α)x2 − α]. (21)

The corresponding wavefunctions can be obtained using (7) and (9) and are given by

ψn(x) = Nn

√
α + x2

1 + x2
φn(x̄) (22)

where Nn is a normalization constant and x̄ is given by (14).
It can be readily verified that

V (x) = V ∗(−x) (23)

so that the potential (21) is PT -symmetric and has a real spectrum given by (17). Also, from
(14) and (18) it follows that the wavefunctions are PT -symmetric.

3.2. PT -symmetric oscillator

Here we shall consider a different type of PT -symmetric problem. We note that the previous
example was non-Hermitian because of the presence of a complex coupling constant. In the
present case, we shall consider a model where non-Hermiticity enters through a complex shift
of coordinates. Keeping the same choice of the mass function as before, we now choose V2(x̄)

to be the PT -symmetric generalized oscillator [23]:

V2(x̄) = (x̄ − iε)2 +
g2 − 1

4

(x̄ − iε)2
. (24)

The energy eigenvalues and the corresponding wavefunctions are given by [23]

En = 4n − 2qg + 2, n = 0, 1, 2, . . . (25)

φn(x̄) = e− 1
2 (x̄−iε)2

(x̄ − iε)−qg+ 1
2 L−qg

n ((x̄ − iε)2) (26)

where q = ±1 is called the quasi-parity.
Now proceeding as in the last example the effective mass potential and the wavefunctions

are found to be

V (x) = [x − (α − 1) tan−1 x − iε]2 +
g2 − 1

[x − (α − 1) tan−1 x − iε]2

+
(α − 1)

2(α + x2)4
[3x4 + (4 − 2α)x2 − α] (27)

ψn(x) = Nn

√
α + x2

1 + x2
φn(x̄). (28)

As before it is readily seen that the effective mass potential (27) as well as the wavefunctions
(28) are again PT -symmetric and (27) has real eigenvalues given by (25).
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4. Isospectral PT -symmetric potentials

In the case of a constant mass Schrödinger equation isospectral potentials (both Hermitian [24]
and non-Hermitian [25]) have been widely studied using different techniques, for example,
the Darboux transformation. However, in the case of an EMSE isospectral potentials can be
obtained, for example, with a change of the mass function also. Here we shall use this method
to construct isospectral PT -symmetric potentials in the case of an EMSE.

To start with let us consider a function of the form

m(x) =
(

α + x2

1 + x2

)4

. (29)

Then from (7) we get

¯̄x = 1√
2

[
2x +

(α − 1)2x

(1 + x2)
+ (α − 1)(α + 3) tan−1 x

]
, −∞ < ¯̄x < ∞ (30)

while (11) gives us

V1(x) = (α − 1)(1 + x2)2

(α + x2)6
[−3x4 + (5α − 7)x2 + α]. (31)

For V2( ¯̄x) let us now choose

V2( ¯̄x) = ( ¯̄x − iε)2 +
g2 − 1

4

( ¯̄x − iε)2
(32)

so that its spectrum is given by (25). In this case V (x) is given by

V (x) =
[√

2x +
(α − 1)2x√

2(1 + x2)
+

(α − 1)(α − 3)√
2

tan−1 x − iε

]2

+
g2 − 1

4[√
2x + (α−1)2x√

2(1+x2)
+ (α−1)(α−3)√

2
tan−1 x − iε

]2

+
(α − 1)(1 + x2)2

(α + x2)6
[3x4 + (7 − 5α)x2 − α]. (33)

The wavefunctions can be obtained using (7), (26) and (29) and they are of the form

ψn(x) = Nn

√
α + x2

1 + x2
φn( ¯̄x) (34)

where φn( ¯̄x) and ¯̄x are given, respectively, by (26) and (30). It may be easily checked that the
potential (33) as well as the wavefunctions are both PT -symmetric and (33) has exactly the
same spectrum as the potential (27). Thus two EMSEs having different mass functions and
potentials are isospectral.

5. Symmetry of the potentials

We have seen that the method of solution is based on mapping the EMSE to an exactly
solvable constant mass Schrödinger equation. Subsequently, choosing an exactly solvable
PT -symmetric potential we obtain an exactly solvable PT -symmetric potential in the EMSE
formalism. Here the question is why do the Schrödinger equations (2) and (10) share the same
symmetry? In other words, why does PT symmetry survive the reverse transformation from
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the constant mass Schrödinger equation to the EMSE? To answer this question, we recall that
the potential V (x) is of the form

V (x) = V2(x̄) − V1(x̄) (35)

where x̄ on the right-hand side is given by (7). Now V2(x̄) is PT -symmetric. So V2(x) is
PT -symmetric if x̄ have the same behaviour as x, i.e,

PT x̄ = −x̄. (36)

This, in turn, depends on the form of m(x). Indeed from equation (9) it follows that for both
the choices of m(x) (i.e, (13) and (29)), equation (36) holds. Also V1(x) given by

V1(x) =
[

7m′2(x) − 4m(x)m′′(x)

32m3(x)

]
(37)

is PT -symmetric for m(x) satisfying (6). As a consequence V (x) is always PT -symmetric.
We now consider the wavefunctions. Since φn(x̄) are PT invariant, it follows from (36) that
ψn(x) are also PT invariant. The same conclusion holds in the case of the potential (33) also
since ¯̄x and x have the same behaviour with respect to PT transformation.

6. Conclusion

Here we have described a general method of obtaining exact solutions of PT -symmetric
effective mass Schrödinger equations. In particular, the method has been applied to obtain
solutions of effective mass analogues ofPT -symmetric Scarf II and oscillator potentials which
have so far been unknown. It is also clear from the procedure that exactly solvable complex
non-PT -symmetric potentials can also be constructed. For example, if we take V2(x̄) as
the complex Morse potential [26], then we would end up with a non-PT -symmetric V (x)

with a real spectrum. We have also examined the construction of isospectral PT -symmetric
potentials using a different mass function m(x). This aspect of EMSE is different from the
constant mass case. In this context, we would like to discuss the choice of the mass function.
The choice of the mass function essentially depends on the specific application. However, the
objective of this paper is of an exploratory nature and consequently we have chosen the mass
functions (13) and (29) suitable for integrability of (9). Finally, we feel it would be interesting
to examine the possibility of constructing effective mass PT -symmetric potentials using other
techniques, for example, Lie algebraic methods, supersymmetry, Darboux transformation etc.
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[17] Lévy-Leblond J-M 1995 Phys. Rev. A 52 1845
[18] Alhaidary A D 2002 Phys. Rev. A 66 042116
[19] Roy B and Roy P 2001 Preprint quant-ph/0106028
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